

Bruno do Carmo Pontes

Simulação Estática e Dinâmica do Controle de Tensão por LTC e Compensador Estático

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

> Orientador: Ricardo Bernardo Prada Co-orientador: José Eduardo Onoda Pessanha

> > Rio de Janeiro Agosto de 2008

Bruno do Carmo Pontes

Simulação Estática e Dinâmica do Controle de Tensão por Gerador e Compensador Síncrono

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Ricardo Bernardo Prada Orientador Departamento de Engenharia Elétrica/PUC-Rio

> > Prof. José Eduardo Onoda Pessanha Co-Orientador UFMA

> > > Prof. Ricardo Diniz Rangel CEPEL

Prof. Glauco Nery Taranto COPPE/UFRJ

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Cinetífico – PUC-Rio

Rio de Janeiro, 11 de agosto de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Bruno do Carmo Pontes

Técnico em Eletrotécnica pelo CEFET-RJ e graduado Engenheiro Eletricista pela UERJ em 2004. De 1999 a junho de 2006 trabalhou no Centro de Operação do Sistema Elétrico de Furnas Centrais Elétricas S.A. como técnico, na operação do sistema elétrico, nas atividades de tempo real. Em julho de 2006 foi aprovado como Engenheiro Eletricista em concurso público para a Eletrobrás Centrais Elétricas S.A., então trabalha no Departamento Desde de Comercialização da empresa, assumindo a atividade de operação e comercialização da UHE Itaipu, do Proinfa - Programa de Incentivo às Fontes Alternativas de Energia e ainda das conversoras internacionais de Rivera (Uruguai) e Uruguaiana (Argentina).

Ficha catalográfica

Pontes, Bruno do Carmo

Simulação estática e dinâmica do controle de tensão por LTC e compensador estático / Bruno do Carmo Pontes ; orientador: Ricardo Bernardo Prada ; co-orientador: José Eduardo Onoda Pessanha. – 2008.

194 f. : il. (color.) ; 30 cm

Dissertação (Mestrado em Engenharia Elétrica)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008. Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Estabilidade de tensão. 3. Instabilidade de tensão 4. LTC. 5. Transformadores. 6. Simulação estática. 7. Simulação dinâmica. 8. Compensador estático de reativos. I. Prada, Ricardo Bernardo. II. Pessanha, José Eduardo Onoda. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

Este trabalho é dedicado a memória de Diogo do Carmo Pontes por ter me ensinado a nunca desistir, por maior que seja a dificuldade. Sua lembrança nos remete à verdadeira alegria de viver. Em 2008 faz 10 anos que ele nos deixou.

Agradecimentos

Ao Prof. Ricardo Prada pela orientação.

Ao Prof. José Pessanha e aos doutorandos Alex Ricardo Arquiñego Paz e Carlos Enrique Portugal Poma, todos da UFMA, pela colaboração nas horas de dificuldade.

Ao CEPEL – Centro de Pesquisas de Energia Elétrica, empresa do Grupo Eletrobras, pela cessão dos programas ANAREDE e ANATEM, utilizados nesta dissertação.

Ao também mestrando Armando Gonçalves Leite, da PUC-Rio, pela bem sucedida parceria de 13 anos (CEFET-RJ, UERJ, PUC-Rio, Furnas e Eletrobrás).

À minha mãe Sonia, por tudo que ela sempre foi, pelo que ela é e pelo que ela sempre representará para mim.

Aos meus pais, pais "emprestados" e minha família, pelo apoio.

À minha namorada Sissi, por ter sido compreensiva e me apoiado nas horas difíceis.

Aos amigos do CTB LIII, de Furnas, pela cumplicidade, pelas trocas, pela ajuda e principalmente pela amizade.

Aos meus amigos, pelo apoio, pela compreensão nesse tempo que estive "ausente".

À vida.

A Deus.

Resumo

Pontes, Bruno do Carmo; Prada, Ricardo Bernardo. **Simulação Estática e Dinâmica do Controle de Tensão por LTC e Compensador Estático**. Rio de Janeiro, 2008. 194 p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O tema abordado neste trabalho é a observação e análise, em regime permanente e dinâmico, da ocorrência de um fenômeno que já foi observado em condições reais de operação do sistema elétrico brasileiro, que é a relação oposta à usual entre a grandeza controlada e a grandeza controladora. Nestes caso, mesmo que haja margem de recursos para manter a tensão controlada, ela não é útil. Por exemplo, uma diminuição na relação de transformação num transformador de tapes variáveis, com intuito de aumentar a tensão controlada acaba por reduzí-la, até que os limites de troca de tapes sejam atingidos ou o sistema entre em colapso. Para demonstrar a existência do problema, foram executadas simulações, em regime permanente e dinâmico, e verificado o efeito do controle de tensão por um transformador com tapes variáveis e por compensadores estáticos de potência reativa, situações corriqueiras de um sistema de potência. Foram demonstradas situações em que foi possível verificar a mudança da região de operação. Para a análise em regime permanente foi utilizado um algoritmo de fluxo de carga, e para a análise dinâmica, uma simulação no domínio do tempo. Nas simulações envolvendo transformadores de tapes variáveis, foi possível verificar a existência o efeito reverso da ação de controle de tensão nas análises estática e dinâmica. Nas simulações utilizando o compensador estático de potência reativa houve divergência entre os resultados das duas análises.

Palavras - chave

Estabilidade de tensão; instabilidade de tensão; LTC; transformadores; simulação estática; simulação dinâmica; compensador estático de reativos.

Abstract

Pontes, Bruno do Carmo; Prada, Ricardo Bernardo. **Static and Dynamic Simulation for the Voltage Control by LTC and Static Voltage Compensator**. Rio de Janeiro, 2008. 194p. Master Dissertation – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents the observation and analysis, in steady state and dynamic performance, of the phenomenon already observed in real operation conditions of the Brazilian Electric System, which is the opposite relationship between the controlled value and the target value. In this case, even if the resources have margin to keep the voltage controlled, this is not useful. For example, the reduction in the turn ratio on load tap changer transformer, with the aim of increase in the controlled voltage, result in its reduction, until the tap changer limit is reached or the system is led to the collapse. To demonstrate the existence of this problem, steady state and dynamic performance simulations were done, and the voltage control effect by on load tap changer transformer and static var compensator, current situations in a power system. Several situations where is possible verify the operation region changing was demonstrated. For steady state analysis was used a load flow algorithm and, for the dynamic analysis, a time domain simulation. In the simulations with on load tap changer transformer, it was possible to verify the existence of the reverse effect of the voltage control action in the static and dynamic analysis. In the simulations using static var compensator, a divergence was found between the results in the two analyses.

Key-Words

Voltage stability, voltage instability, LTC, transformers, static simulation, dynamic simulation, static voltage compensator.

Sumário

1	Introdução	26
1.1	O Problema da Estabilidade de Tensão	28
1.2	Casos de Instabilidade de Tensão no Sistema Brasileiro	29
1.3	Instabilidade de Tensão em 24/04/1997 às 18:15 h	30
1.4	Instabilidade de Tensão em 25/04/1997 às 18:17 h	31
1.5	Instabilidade de Tensão em 13/11/1997 às 9:25 h	32
1.6	Organização do Trabalho	33
2	Estabilidade de Tensão [6]	34
2.1	Introdução	34
2.2	Equações de Fluxo de Potência Ativa e Reativa Injetada na	
Barra de	e Carga	34
2.3	Curvas P, Q e ϕ Constantes	36
2.4	O Limite de Estabilidade de Tensão (LET)	38
2.5	A Existência da Potência Transmitida "Maximum Maximorum"	42
2.6	O Porquê da Potência Transmitida Máxima para a Carga	46
2.7	Ponto de operação na parte superior da curva	48
2.8	Ponto de operação na parte inferior da curva	49
2.9	O Porquê da Introdução de um Capacitor Diminui a Tensão	50
2.9.1	Ponto de operação na parte superior da curva	52
2.9.2	Ponto de operação na parte inferior da curva	53
2.10	Análise dos resultados	53
3	LTC – Load Tap Change	54
3.1	Introdução	54
3.2	Modelagem dos LTCs para Análises de Regime Permanente	
[8]		54
3.2.1	LTCs com Variação de Tapes no Primário	54
3.2.2	LTCs com Variação de Tapes no Secundário	58
3.3	Modelagem de um LTC nos Programa de Fluxo de Carga [9]	61
3.4	Representação dos Controles e Cálculo dos Índices de	
Estabilio	dade de Tensão [7,9]	62

3.4.1	Índice	Таре	do	LTC	х	Tensão	da	Barra	Controlada	
Localmente	e									62
3.4.2	Índice	Таре	do	LTC	х	Tensão	da	Barra	Controlada	
Remotame	nte									65
3.5	Equaçõe	s da Ma	atriz	Jacob	ian	а				66
3.6	Análise d	los Res	sulta	dos						67
4 C	ER – Con	npensa	dor l	Estátic	co c	le Potênci	ia Re	eativa		68
4.1	Introduçã	io								68
4.2	Reatânci	a e Sus	scep	tância	do	CER[9]				68
4.3	Modelage	em do (CER	nos F	rog	gramas de	Flu	xo de P	otência	71
4.4	Equaçõe	s de Co	ontro	le par	a o	Cálculo c	los Íı	ndices		75
4.5	Estrutura	da Ma	triz .	lacobi	ana	a e Cálcul	o do	s Índice	S	76
4.5.1	Índice	Suscep	tânc	ia x Te	ens	ão Termii	nal (d	ou Rem	ota)	76
4.5.1.1	Mode	elo de i	njeça	ão de	cor	rente - Co	ontro	le de T	ensão Local	
(V _{cont} =V _t)										77
4.5.1.2	Mode	elo de	inje	ção c	le	corrente	- Co	ontrole	de Tensão	
Remoto (V	_{cont} ≠V _t)									77
4.5.1.3	Mode	elo de i	njeçá	ão de	pot	ência - Co	ontro	le de T	ensão Local	
(V _{cont} =V _t)										78
4.5.1.4	Mode	elo de	inje	ção d	le	potência	- Co	ontrole	de Tensão	
Remoto (V	_{cont} ≠V _t)									78
4.5.2	Índice	Ângulo	de	Dispa	ro d	dos Tiristo	ores	x Tens	ão Terminal	
(ou Remota	a)									79
4.5.2.1	Mode	elo de i	njeça	ão de	cor	rente - Co	ontro	le de T	ensão Local	
(V _{cont} =V _t)										80
4.5.2.2	Mode	elo de	inje	ção c	le	corrente	- Co	ontrole	de Tensão	
Remoto (V	_{cont} ≠V _t)									80
4.5.2.3	Mode	elo de i	njeçá	ão de	pot	ência - Co	ontro	le de T	ensão Local	
(V _{cont} =V _t)										81
4.5.2.4	Mode	elo de	inje	ção d	le	potência	- Co	ontrole	de Tensão	
Remoto (V	_{cont} ≠ _{∨t})									81
4.6	Exemplo	Numér	ico [9]						83
4.6.1	Cálculo	o do Ínc	dice	Susce	ptâ	ncia x Tei	nsão	Termin	al	85
4.6.2	Cálculo	o do Ínc	dice /	Ângulo	o de	e Disparo	dos	Tiristor	es x Tensão	
Terminal										86
4.6.3	Resulta	ados de	e 4.6	.1 e 4.	6.2	2				88

4.7 Análise dos Resultados	91
5 Análise do Efeito do Controle de Tensão com LTCs	92
5.1 Introdução	92
5.2 Modelagem do LTC	92
5.3 Modelagem dos Reguladores de Tensão	95
5.4 Modelagem da Carga	96
5.5 Carga "Potência Constante"	96
5.5.1 Testes no Sistema de 3 Barras com a Carga "Potência	ì
Constante"	97
5.5.1.1 Região Normal de Operação	97
5.5.1.2 Região Anormal de Operação	102
5.6 Carga "Impedância Constante"	107
5.6.1 Testes do Sistema de 3 Barras com a Carga "Impedância	à
Constante"	108
5.6.1.1 Região Normal de Operação	108
5.7 Carga "Corrente Constante"	113
5.8 Carga "ZIP"	114
5.8.1 Testes do Sistema de 3 Barras com a Carga "ZIP"	115
5.8.1.1 Região Normal de Operação	115
5.8.1.2 Região Anormal de Operação	121
5.9 Análise dos Resultados	127
6 Análise do Efeito do Controle de Tensão com LTCs em un	۱
Sistema-Teste de 10 barras, em Regime Permanente e Dinâmico	129

6.1	Introdução	129
6.2	Controle de Tensão por LTC Automático	130
6.3	Análise em Regime Permanente	130
6.3.1	Região Normal de Operação	131
6.3.2	Região Anormal de Operação	132
6.4	Análise no Domínio do Tempo	134
6.4.1	Região Normal de Operação	134
6.4.2	Região Anormal de Operação	137
6.5	Controle de Tensão por LTC Manual	140
6.5.1	Análise em Regime Permanente	140
6.5.1.1	Regiões Normal e Anormal de Operação	140
6.5.2	Análise no Domínio do Tempo	143

6.5.2.1	Regiões Normal e Anormal de Operação	143
6.6	Análise dos resultados	144
7	Análise do Efeito do Controle de Tensão com Compensadores	
Estáticos	de Reativos (CER) em um Sistema-Teste de 39 Barras, em	
Regime P	ermanente e Dinâmico	146
7.1	Introdução	146
7.2	Análise em Regime Permanente	151
7.2.1	Regiões Normal e Anormal de Operação	151
7.3	Análise no Domínio do Tempo	154
7.3.1	Região Normal de Operação	154
7.3.2	Região Anormal de Operação	161
7.4	Análise dos resultados	174
8	Conclusão e Sugestões para Trabalhos Futuros	175
8.1	Sugestões para trabalhos futuros	177
9	Referências Bibliográficas	178
10	Apêndice	180
10.1	Arquivo base do ANATEM das simulações do Capítulo 5	181
10.2	Complemento de 10.1 para a simulação da Figura 3.26 e	
Figura 3.2	7	181
10.3	Complemento de 10.1 para a simulação da Figura 3.28,	
Figura 3.2	9, Figura 3.30 e Figura 3.31	181
10.4	Complemento de 10.2 para a simulação da Figura 3.33 e	
Figura 3.3	34	182
10.5	Complemento de 10.3 para a simulação da Figura 3.35,	
Figura 3.3	6, Figura 3.37 e Figura 3.38	182
10.6	Complemento de 10.1 para a simulação da Figura 3.41 e	
Figura 3.4	2	182
10.7	Complemento de 10.6 para a simulação da Figura 3.43,	
Figura 3.4	4, Figura 3.45 e Figura 3.46	183
10.8	Complemento de 10.1 para a simulação da Figura 3.50 e	
Figura 3.5	1	183
10.9	Complemento de 10.8 para a simulação da Figura 3.52	
,Figura 3.	53, Figura 3.54 e Figura 3.55	184

10.10	Complemento de 10.8 para a simulação da Figura 3.56 e	
Figura 3.57		184
10.11	Complemento de 10.8 para a simulação da Figura 3.59 e	
Figura 3.60		185
10.12	Complemento de 10.9 para a simulação da Figura 3.61,	
Figura 3.62, F	igura 3.63 e Figura 3.64	185
10.13	Complemento de 10.10 para a simulação da Figura 3.65 e	
Figura 3.66		185
10.14	Arquivo base do ANATEM das simulações da Figura 6.4 a	
Figura 6.9		186
10.15	Complemento de 10.14 para a simulação da Figura 6.4	186
10.16	Complemento de 10.15 para a simulação da Figura 6.5	186
10.17	Complemento de 10.15 para a simulação da Figura 6.6	186
10.18	Complemento de 10.15 para a simulação da Figura 6.7	187
10.19	Complemento de 10.16 para a simulação da Figura 6.8	187
10.20	Complemento de 10.17 para a simulação da Figura 6.9	187
10.21	Arquivo completo do ANATEM para a simulação da Figura	
6.11 e Figura	6.12	187
10.22	Arquivo base do ANATEM das simulações do Capítulo 7	189
10.23	Complemento de 10.22 para a simulação da Figura 7.5 a	
Figura 7.8 e F	igura 7.17 a Figura 7.20 (alteração apenas do caso base de	
regime perma	nente)	189
10.24	Complemento de 10.22 para a simulação da Figura 7.9 a	
Figura 7.12 e	Figura 7.21 a Figura 7.24 (alteração apenas do caso base	
de regime per	manente)	190
10.25	Complemento de 10.22 para a simulação da Figura 7.13 a	
Figura 7.16 e	Figura 7.25 a Figura 7.28 (alteração apenas do caso base	
de regime per	manente)	190
10.26	Complemento de 10.22 para a simulação da Figura 7.29 e	
Figura 7.30		191
10.27	Complemento de 10.22 para a simulação da Figura 7.31 e	
Figura 7.32		192
10.28	Complemento de 10.22 para a simulação da Figura 7.33 a	
Figura 7.36		193

Lista de Tabelas

Tabela 2.1 - Três Possibilidades de Solução para a Tensão na Carga com	1
Mesmo Fator de Potência	37
Tabela 2.2 - Variações de Tensão, Corrente e Potência na Barra de	
Carga	48
Tabela 2.3 - Pontos de Operação para Avaliar o Aumento ou Decréscimo	
da Tensão com a Introdução de um Capacitor	52
Tabela 3.1 - Ponto de operação com a barra controlada na região anorma	,I
de operação	64
Tabela 3.2 - Ponto de operação com a barra controlada na região normal	
de operação	65
Tabela 4.1 – Dados de Linha do Sistema de 5 Barras	84
Tabela 4.2 – Ponto de operação inicial na região normal de operação	88
Tabela 4.3 – Efeito do aumento de V_{esp} no ponto de operação da Tabela	
4.2	89
Tabela 4.4 – Ponto de operação inicial na região anormal de operação	90
Tabela 4.5 – Efeito do Aumento de $V_{\mbox{\scriptsize esp}}$ no ponto de Operação da Tabela	
4.4	90
Tabela 5.1 – Ponto de operação inicial	98
Tabela 5.2 – Resultado da variação do tape para variações na tensão	
controlada, carga "potência constante"	98
Tabela 5.3 – Ponto de operação inicial	103
Tabela 5.4 – Resultado da variação do tape para variações na tensão	
controlada, carga "potência constante"	103
Tabela 5.5 – Ponto de operação inicial	109
Tabela 5.6 – Resultado da variação do tape para variações da tensão	
controlada, carga "impedância constante"	109
Tabela 5.7 – Ponto de operação inicial	116
Tabela 5.8 – Resultado da variação do tape em virtude da variação na	
tensão controlada, carga "ZIP"	116
Tabela 5.9 – Ponto de operação inicial	121

Tabela 5.10 – Resultado da variação do tape em virtude da variação da	
tensão controlada, carga "ZIP"	122
Tabela 5.11 – Comparação dos pontos de operação das simulações	
estática e dinâmica	127
Tabela 6.1 – Dados dos circuitos CA do sistema-teste de 10 barras	130
Tabela 6.2 – Dados dos transformadores do sistema-teste de 10 barras	130
Tabela 6.3 – Ponto de operação inicial	131
Tabela 6.4 – Posição dos tapes no ponto de operação inicial	131
Tabela 6.5 – Resultado da variação da tensão controlada (barra 11) e	
tape do transformador entre as barras 10 e 11	132
Tabela 6.6 – Ponto de operação inicial	133
Tabela 6.7 – Posição dos tapes no ponto de operação inicial	133
Tabela 6.8 – Resultado da variação do módulo da tensão controlada	
(barra 11), da tensão na barra 10 e do tape do transformador entre as	
barras 10 e 11	133
Tabela 6.9 – Pontos iniciais (0 s) e finais (20 s) da simulação no domínio	
do tempo	135
Tabela 6.10 - Pontos iniciais (0 s) e finais (20 s) da simulação no domínio	D
do tempo, com limitação de atuação do LTC	136
Tabela 6.11 - Pontos iniciais (0 s) e finais (20 s) da simulação no domínio)
do tempo, com limitação de atuação do LTC	139
Tabela 6.12 – Ponto de operação inicial	141
Tabela 6.13 – Posição dos tapes no ponto de operação inicial	141
Tabela 6.14 – Resultado da variação do tape do transformador entre as	
barras 10 e 11 e dos módulos das tensões nas barras 10 e 11	141
Tabela 6.15 – Módulo das tensões das barras 10 e 11 e tape do	
transformador entre estas duas barras, retirados da simulação no domínio	C
do tempo	144
Tabela 7.1 – Dados dos circuitos CA do sistema-teste de 39 barras	148
Tabela 7.2 – Dados dos transformadores do sistema-teste de 39 barras	149
Tabela 7.3 – Ponto de operação inicial	152
Tabela 7.4 - Resultado da variação da potência reativa gerada pelo CER	,
da tensão controlada (barra 16) e da susceptância do compensador	153
Tabela 7.5 - Pontos iniciais (0 s) e finais (10 s) da simulação no domínio	
do tempo, com regulador do CER built-in	161
Tabela 7.6 - Pontos iniciais (0 s) e finais (10 s) da simulação no domínio	
do tempo, com regulador do CER customizado	161

Tabela 7.7 - Pontos iniciais (0 s) e em t=10 s da simulação no domínio do	
tempo, com regulador do CER customizado e sem regulador de tensão	
nos geradores	161
Tabela 7.8 - Pontos iniciais (0 s) e finais (10 s) da simulação no domínio	
do tempo, com regulador do CER <i>built-in</i>	168
Tabela 7.9 - Pontos iniciais (0 s) e finais (10 s) da simulação no domínio	
do tempo, com regulador do CER customizado	168
Tabela 7.10 - Pontos iniciais (0 s) e em t=10 s da simulação no domínio	
do tempo, com regulador do CER customizado e sem regulador de tensão)
nos geradores	168
Tabela 7.11 - Pontos de operação em 0s (4), 4+ s (5), 8+ s (6) 12+ s (7),	
16+ s (8) da simulação no domínio do tempo, com regulador do CER built	-
in e reguladores de tensão dos geradores como barra infinita	172
Tabela 7.12 - Pontos de operação em 0s (4), 4+ s (5), 8+ s (6) 12+ s (7),	
16+ s (8) da simulação no domínio do tempo, com regulador do CER	
customizados e reguladores de tensão dos geradores como barra infinita	173
Tabela 7.13 - Pontos de operação em 0s (4), 4+ s (5), 8+ s (6) 12+ s (7),	
16+ s (8) da simulação no domínio do tempo, com regulador do CER	
customizado e sem reguladores de tensão nos geradores	173

Lista de Figuras

Figura 1.1 – Sistema Interligado Nacional horizonte 2009 com a previsão	
de interligação do sistema Acre-Rondônia [3]	27
Figura 1.2 – Curva de carga típica do SIN em dias úteis [1]	28
Figura 2.1 - Sistema Série de Duas Barras	35
Figura 2.2 - Três Possibilidades de Solução para a Tensão na Carga com	
Mesmo fator de Potência	37
Figura 2.3 - Curva para Fator de Potência Constante na Barra de Carga	
no Plano SV	38
Figura 2.4 - Circuito com as Impedâncias da Transmissão e da Carga	39
Figura 2.5 - Limite de Estabilidade de Tensão no Plano SV	42
Figura 2.6 - Lugar Geométrico da Tensão na Carga para Todos os	
Possíveis Diferentes Níveis de Potência Ativa Constante e Para Alguns	
Níveis de Potência Reativa Constante	43
Figura 2.7 - Aumento e Diminuição da Tensão Respectivamente na	
Região Superior e Inferior da Curva com a Introdução de um Capacitor	44
Figura 2.8 - Potência Ativa Consumida na Carga com Fator de Potência	
Constante	49
Figura 2.9 - Circuito sem Capacitor	50
Figura 2.10 - Circuito com Capacitor	50
Figura 3.1 – Modelagem π clássica de linhas de transmissão	55
Figura 3.2 – Modelagem de LTCs com variação de tapes no primário	55
Figura 3.3 – Circuito π equivalente de um LTC	56
Figura 3.4 – Circuito π equivalente de um LTC com parâmetros expressos	
em função da admitância e relação de transformação	58
Figura 3.5 – Circuito π equivalente de um LTC com parâmetros expressos	
em função da impedância e relação de transformação	58
Figura 3.6 – Modelagem de LTCs com variação de tapes no secundário	59
Figura 3.7 – Circuito π equivalente de um LTC com parâmetros expressos	
em função da admitância e relação de transformação	61

Figura 3.8 – Circuito π equivalente de um LTC com parâmetros expressos	
em função da impedância e relação de transformação	61
Figura 3.9 - Sistema de 3 Barras com LTC	62
Figura 4.1 – Estrutura do CER	69
Figura 4.2 - Reatância equivalente do CER em função do ângulo de	
disparo dos tiristores (X _C = 15 Ω e X _L = 2,56 Ω)	70
Figura 4.3 - Susceptância equivalente do CER em função do ângulo de	
disparo dos tiristores (X _C = 15 Ω e X _L = 2,56 Ω)	71
Figura 4.4 – Característica VI em Regime Permanente do CER [11]	71
Figura 4.5 – Característica VQ em Regime Permanente do CER [11]	72
Figura 4.6 – Efeito esperado da variação de α sobre V _{cont}	82
Figura 4.7 – Efeito oposto ao esperado da variação de α sobre V _{cont}	83
Figura 4.8 – Sistema de 5 Barras com CER	83
Figura 4.9 – Susceptâncias do FC, TCR em função do ângulo de disparo	
dos tiristores	85
Figura 4.10 – Susceptância do CER em função do ângulo de disparo dos	
tiristores	85
Figura 5.1 – Diagrama unifilar do sistema-teste de 3 barras	92
Figura 5.2 – Diagrama de blocos do modelo de LTC automático MD01 do	
ANATEM	94
Figura 5.3 - Diagrama de blocos do regulador de tensão MD20 do	
ANATEM	95
Figura 5.4 – Diagrama de blocos do regulador de tensão customizado	96
Figura 5.5 - Curvas PV de um sistema com carga potência constante	
para diferentes valores de tape	97
Figura 5.6 - Resultado da variação da tensão da barra 1 X tape, carga	
"potência constante"	99
Figura 5.7 – Resultado da variação da tensão da barra 0, carga "potência	
constante", no domínio do tempo, regulador de tensão MD20 do ANATEM	100
Figura 5.8 – Resultado da variação da tensão da barra 1 e do tape, carga	
"potência constante", no domínio do tempo, regulador de tensão MD20	
do ANATEM	100
Figura 5.9 - Resultado da variação da tensão das 3 barras, carga	
"potência constante", no domínio do tempo, regulador de tensão barra	
infinita	101
Figura 5.10 - Resultado da variação do tape, carga "potência constante",	
no domínio do tempo , regulador de tensão barra infinita	101

Figura 5.11 - Resultado da variação das potências geradas, carga "potência constante", no domínio do tempo, regulador de tensão barra infinita 102 Figura 5.12 - Resultado da variação das potências consumidas, carga "potência constante", no domínio do tempo, regulador de tensão barra infinita 102 Figura 5.13 – Resultado da variação da tensão da barra 1 X tape, carga 103 "potência constante" Figura 5.14 - Resultado da variação da tensão da barra 0, carga "potência constante", no domínio do tempo, regulador de tensão MD20 do ANATEM 104 Figura 5.15 – Resultado da variação da tensão da barra 1 e do tape, carga "potência constante", no domínio do tempo, regulador de tensão MD20 do ANATEM 105 Figura 5.16 – Resultado da variação da tensão das 3 barras, carga "potência constante", no domínio do tempo, regulador de tensão barra 105 infinita Figura 5.17 - Resultado da variação do tape, carga "potência constante", no domínio do tempo, regulador de tensão barra infinita 106 Figura 5.18 - Resultado da variação das potências geradas, carga "potência constante", no domínio do tempo, regulador de tensão barra 106 infinita Figura 5.19 – Resultado da variação das potências consumidas, carga "potência constante", no domínio do tempo, regulador de tensão barra infinita 107 Figura 5.20 - Curvas PV para diferentes valores de tape e curvas de carga tipo "impedância constante" e o efeito da troca de tape em pontos de operação na parte superior e inferior da curva PV 108 Figura 5.21 – Resultado da variação da tensão da barra 1 X tape, carga "impedância constante" 109 Figura 5.22 - Resultado da variação da tensão da barra 0, carga "impedância constante", no domínio do tempo, regulador de tensão MD20 do ANATEM 110 Figura 5.23 – Resultado da variação da tensão da barra 1 e do tape, carga "impedância constante", no domínio do tempo, regulador de tensão MD20 do ANATEM 111

Figura 5.24 - Resultado da variação da tensão das 3 barras, carga "impedância constante", no domínio do tempo, regulador de tensão barra 111 infinita Figura 5.25 - Resultado da variação do tape, carga "impedância constante", no domínio do tempo, regulador de tensão barra infinita 112 Figura 5.26 - Resultado da variação das potências geradas, carga "impedância constante", no domínio do tempo, regulador de tensão barra 112 infinita Figura 5.27 - Resultado da variação das potências consumidas, carga "impedância constante", no domínio do tempo, regulador de tensão barra infinita 113 Figura 5.28 – Curvas PV para dois valores de tape, a curva de carga tipo "corrente constante", e o efeito da troca de tape 114 Figura 5.29 - Curvas PV para dois valores de tape, curva de carga tipo "ZIP" e o efeito da troca de tape em pontos de operação na parte superior e inferior da curva PV 115 Figura 5.30 – Resultado da variação da tensão da barra 1 X tape, carga "7IP" 116 Figura 5.31 – Resultado da variação da tensão da barra 0, carga "ZIP", no 117 domínio do tempo, regulador de tensão MD20 do ANATEM Figura 5.32 – Resultado da variação da tensão da barra 1 e do tape, carga "ZIP", no domínio do tempo, regulador de tensão MD20 do ANATEM 118 Figura 5.33 – Resultado da variação da tensão das 3 barras, carga "ZIP", no domínio do tempo, regulador de tensão barra infinita 118 Figura 5.34 - Resultado da variação do tape, carga "ZIP", no domínio do tempo, regulador de tensão barra infinita 119 Figura 5.35 – Resultado da variação das potências geradas, carga "ZIP", no domínio do tempo, regulador de tensão barra infinita 119 Figura 5.36 - Resultado da variação das potências consumidas, carga 120 "ZIP", no domínio do tempo, regulador de tensão barra infinita Figura 5.37 – Resultado da variação da tensão da barra de geração e de carga, carga "ZIP", no domínio do tempo, regulador de tensão 120 customizado Figura 5.38 – Resultado da variação do tensão da barra terminal do transformador e do tape, carga "ZIP", no domínio do tempo, regulador de tensão barra customizado 121

Figura 5.39 – Resultado da variação da tensão da barra 1 X tape, carga	
"ZIP"	122
Figura 5.40 – Resultado da variação da tensão da barra 0, carga "ZIP", no	
domínio do tempo, regulador de tensão MD20 do ANATEM	123
Figura 5.41 – Resultado da variação da tensão da barra 1 e do tape,	
carga "ZIP", no domínio do tempo, regulador de tensão MD20 do	
ANATEM	123
Figura 5.42 – Resultado da variação da tensão das 3 barras, carga "ZIP",	
no domínio do tempo , regulador de tensão barra infinita	124
Figura 5.43 - Resultado da variação do tape, carga "ZIP", no domínio do	
tempo , regulador de tensão barra infinita	124
Figura 5.44 – Resultado da variação das potências geradas, carga "ZIP",	
no domínio do tempo , regulador de tensão barra infinita	125
Figura 5.45 - Resultado da variação das potências consumidas, carga	
"ZIP", no domínio do tempo , regulador de tensão barra infinita	125
Figura 5.46 – Resultado da variação da tensão da barra de geração e de	
carga, carga "ZIP", no domínio do tempo , regulador de tensão	
customizado	126
Figura 5.47 - Resultado da variação do tensão da barra terminal do	
transformador e do tape, carga "ZIP", no domínio do tempo, regulador de	
tensão barra customizado	126
Figura 6.1 – Diagrama unifilar do sistema-teste de 10 barras	129
Figura 6.2 – Resultado da variação da tensão da barra 11 X tape do	
transformador entre as barras 10 e 11	132
Figura 6.3 – Resultado da variação da tensão da barra 11 X tape do	
transformador entre as barras 10 e 11	134
Figura 6.4 - Resultado da variação da tensão das barras 10, do tape	
contínuo e ilimitado e da tensão da barra 11, no domínio do tempo	135
Figura 6.5 - Resultado da variação da tensão das barras 10, do tape	
contínuo e limitado e da tensão da barra 11, no domínio do tempo	136
Figura 6.6 - Resultado da variação da tensão das barras 10, do tape	
discreto e limitado e da tensão da barra 11, no domínio do tempo	137
Figura 6.7 - Resultado da variação da tensão da barra 11, do tape	
contínuo e iilimitado e da tensão da barra 10, no domínio do tempo	137
Figura 6.8 - Resultado da variação da tensão da barra 11, do tape	
contínuo e limitado e da tensão da barra 10, no domínio do tempo	139

Figura 6.9 - Resultado da variação da tensão das barras 10, do tape discreto e limitado e da tensão da barra 11, no domínio do tempo 140 Figura 6.10 - Resultado da variação da tensão da barra 11 X tape do 142 transformador entre as barras 10 e 11 Figura 6.11 - Resultado da variação do módulo da tensão das barras 10 e 11, para incrementos sucessivos no tape, no domínio do tempo 143 Figura 6.12 - Alteração imposta ao tape do transformador entre as barras 143 10 e 11, no domínio do tempo Figura 7.1 – Diagrama unifilar do sistema-teste de IEEE-39 barras New England 147 Figura 7.2 – Modelo built-in para simulação dinâmica do CER 150 Figura 7.3 – Modelo customizado para simulação dinâmica do CER 151 Figura 7.4 – Resultado da variação da tensão da barra 16 x susceptância do CER 153 Figura 7.5 - Resultado da variação da tensão dos geradores ligados às barras 30 a 34, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 155 Figura 7.6 - Resultado da variação da tensão dos geradores ligados às barras 35 a 39, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 155 Figura 7.7 - Resultado da variação da tensão da barra 16, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 156 Figura 7.8 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 156 Figura 7.9 - Resultado da variação da tensão dos geradores ligados às barras 30 a 34, no domínio do tempo, simulação com regulador do CER customizado e reguladores de tensão dos geradores como barra infinita 157 Figura 7.10 - Resultado da variação da tensão dos geradores ligados às barras 35 a 39, no domínio do tempo, simulação com regulador do CER customizado e reguladores de tensão dos geradores como barra infinita 157 Figura 7.11 - Resultado da variação da tensão da barra 16, no domínio do tempo, simulação com regulador do CER customizado e reguladores de tensão dos geradores como barra infinita 158

Figura 7.12 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER customizado e reguladores 158 de tensão dos geradores como barra infinita Figura 7.13 - Resultado da variação da tensão dos geradores ligados às barras 30 a 34, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão dos geradores 159 Figura 7.14 - Resultado da variação da tensão dos geradores ligados às barras 35 a 39, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão nos geradores 159 Figura 7.15 - Resultado da variação da tensão da barra 16, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão nos geradores 160 Figura 7.16 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER customizado e sem 160 reguladores de tensão nos geradores Figura 7.17 - Resultado da variação da tensão dos geradores ligados às barras 30 a 34, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 162 Figura 7.18 - Resultado da variação da tensão dos geradores ligados às barras 35 a 39, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 162 Figura 7.19 - Resultado da variação da tensão da barra 16, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 163 Figura 7.20 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER built-in e reguladores de tensão dos geradores como barra infinita 163 Figura 7.21 - Resultado da variação da tensão dos geradores ligados às barras 30 a 34, no domínio do tempo, simulação com regulador do CER customizado e reguladores de tensão dos geradores como barra infinita 164 Figura 7.22 - Resultado da variação da tensão dos geradores ligados às barras 35 a 39, no domínio do tempo, simulação com regulador do CER customizado e reguladores de tensão dos geradores como barra infinita 164 Figura 7.23 - Resultado da variação da tensão da barra 16, no domínio do tempo, simulação com regulador do CER customizado e reguladores de tensão dos geradores como barra infinita 165

Figura 7.24 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER customizado e reguladores 165 de tensão dos geradores como barra infinita Figura 7.25 - Resultado da variação da tensão dos geradores ligados às barras 30 a 34, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão dos geradores 166 Figura 7.26 - Resultado da variação da tensão dos geradores ligados às barras 35 a 39, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão nos geradores 166 Figura 7.27 - Resultado da variação da tensão da barra 16, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão nos geradores 167 Figura 7.28 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER customizado e sem 167 reguladores de tensão nos geradores Figura 7.29 - Resultado da variação da tensão controlada pelo CER, no domínio do tempo, simulação com regulador do CER built-in e 169 reguladores de tensão dos geradores como barra infinita Figura 7.30 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER built-in e reguladores de 169 tensão dos geradores como barra infinita Figura 7.31 - Resultado da variação da tensão controlada pelo CER, no domínio do tempo, simulação com regulador do CER customizados e 170 reguladores de tensão dos geradores como barra infinita Figura 7.32 - Resultado da variação da susceptância do CER, no domínio do tempo, simulação com regulador do CER customizados e reguladores de tensão dos geradores como barra infinita 170 Figura 7.33 - Resultado da variação da tensão dos geradores, no domínio do tempo, simulação com regulador do CER customizado e sem 171 reguladores de tensão nos geradores Figura 7.34 - Resultado da variação da tensão dos geraodres, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão nos geradores 171 Figura 7.35 - Resultado da variação da tensão controlada pelo CER, no domínio do tempo, simulação com regulador do CER customizado e sem reguladores de tensão nos geradores 172

Figura 7.36 - Resultado da variação da susceptância do CER, no domíniodo tempo, simulação com regulador do CER customizado e semreguladores de tensão nos geradores172

Siglas e Acrônimos

ANEEL	Agência Nacional de Energia Elétrica
CA	Corrente Alternada
CAG	Controle Automático de Geração
CCAT	Corrente Contínua em Alta Tensão
CDU	Controlador Definido pelo Usuário
CE/CER	Compensador Estático de Reativos
Cemig	Companhia Energética de Minas Gerais
CNOS	Centro Nacional de Operação do Sistema
CS	Compensador Síncrono
ECE	Esquema de Controle de Emergência
Eletrobrás	Centrais Elétricas Brasileiras S.A.
Eletropaulo	Eletropaulo - Eletricidade de São Paulo S.A.
ERAC	Esquema Regional de Alívio de Carga
Escelsa	Espírito Santo Centrais Elétricas S.A.
FC	Fixed Capacitor
LET	Limite de Estabilidade de Tensão
LTC	Load Tap Change
ONS	Operador Nacional do Sistema
OXL	Over Excitation Limiter
RESEB	Reestruturação do Sistema Elétrico Brasileiro
SE	Subestação
SEP	Sistema Elétrico de Potência
SIN	Sistema Interligado Nacional
SVC	Static var Compensator
TCR	Thyristor Controlled Reactor
UHE	Usina Hidroelétrica